

Product Description SALSA® MLPA® Probemix P245-B1 Microdeletion Syndromes-1A

To be used with the MLPA General Protocol.

Version B1

For complete product history see page 17.

Catalogue numbers:

- P245-025R: SALSA MLPA Probemix P245 Microdeletion Syndromes-1A, 25 reactions.
- P245-050R: SALSA MLPA Probemix P245 Microdeletion Syndromes-1A, 50 reactions.
- **P245-100R:** SALSA MLPA Probemix P245 Microdeletion Syndromes-1A, 100 reactions.

To be used in combination with a SALSA MLPA reagent kit and Coffalyser.Net data analysis software. MLPA reagent kits are either provided with FAM or Cy5.0 dye-labelled PCR primer, suitable for Applied Biosystems and Beckman/SCIEX capillary sequencers, respectively (see www.mrcholland.com).

Certificate of Analysis

Information regarding storage conditions, quality tests, and a sample electropherogram from the current sales lot is available at www.mrcholland.com.

Precautions and warnings

For professional use only. Always consult the most recent product description AND the MLPA General Protocol before use: www.mrcholland.com. It is the responsibility of the user to be aware of the latest scientific knowledge of the application before drawing any conclusions from findings generated with this product.

Data normalisation should be performed within one experiment. It is recommended to analyse male and female samples separately, *i.e.* only use male reference samples for the analysis of male test samples and only use female reference samples for the analysis of female test samples.

Please note that many regions targeted by this P245 probemix, and in particular the *MECP2*, *TRPS1* and *CREBBP* genes, are extremely GC-rich and are therefore difficult to denature. The use of DNA samples containing 20 mM or more salt can result in false positive deletion results. In particular, the use of Qiagen EZ1, M48 and M96 systems frequently results in DNA denaturation problems as these systems can result in very high salt concentrations. High salt concentrations can also be due to evaporation (dried out samples; SpeedVac concentration). When using silica column based DNA purification, salt concentrations can often be reduced by inclusion of a wash step with 85% ethanol before the elution step.

A low signal of the 88 nt and 96 nt DNA denaturation control fragments provides a warning for incomplete DNA denaturation. Please note that at certain salt concentrations, MECP2, TRPS1 and CREBBP probes may show reduced probe signals even in the absence of a denaturation warning in the Coffalyser.Net software.

Intended purpose

The SALSA MLPA Probemix P245 Microdeletion Syndromes-1A is an in vitro diagnostic (IVD)¹ or research use only (RUO) semi-quantitative assay² for the detection of a distinct subset of recurrent microdeletions and microduplications (mentioned in the table below) in genomic DNA isolated from human peripheral whole blood, buccal swabs, (un)cultured amniotic fluid obtained in week 16 of the pregnancy or later and free from blood contamination, (un)cultured chorionic villi free from maternal contamination, or foetal blood specimens. P245 Microdeletion Syndromes-1A is intended to confirm a potential cause for and clinical diagnosis of developmental delay, intellectual disability and/or congenital anomalies.

This probemix has a limited number of probes for each specific chromosomal region and will therefore not detect all possible causes of the syndromes included. Copy number variations (CNVs) detected with the P245

Microdeletion Syndromes-1A probemix must be confirmed by a designated MLPA follow-up probemix or another technique.

Assay results are intended to be used in conjunction with other clinical and diagnostic findings, consistent with professional standards of practice, including confirmation by alternative methods, parental evaluation, clinical genetic evaluation, and counselling, as appropriate. The results of this test should be interpreted by a clinical molecular geneticist or equivalent.

This device is not intended to be used for standalone diagnostic purposes, pre-implantation testing, population screening, or for the detection of, or screening for, acquired or somatic genetic aberrations.

¹Please note that this probemix is for in vitro diagnostic (IVD) use in the countries specified at the end of this product description. In all other countries, the product is for research use only (RUO).

²To be used in combination with a SALSA MLPA Reagent Kit and Coffalyser.Net analysis software.

Syndromes that can be detected by the P245 probemix							
Syndrome	Genetic locus	OMIM	Number of probes				
1p36 deletion syndrome	1p36	607872	3				
2p16.1-p15 microdeletion syndrome	2p16.1-p15	612513	2				
2q23.1 microdeletion/microduplication syndrome	2q23.1	156200	2				
Glass syndrome	2q32-q33	612313	2				
3q29 microdeletion syndrome	3q29	609425	2				
3q29 microduplication syndrome	3q29	611936	2				
Wolf-Hirschhorn syndrome	4p16.3	194190	2				
Cri-du-Chat syndrome	5p15	123450	2				
Sotos syndrome	5q35.3	117550	2				
Williams-Beuren syndrome	7q11.23	194050	2				
Williams-Beuren duplication syndrome	7q11.23	609757	Z				
Langer-Giedion syndrome	8q24.11-q24.13	150230	2				
9q22.3 microdeletion syndrome	9q22.3	-	2				
DiGeorge syndrome-2	10p14-p13	601362	1				
Prader-Willi syndrome	15q11.2	176270	2				
Angelman syndrome	15q11.2	105830	3				
Witteveen-Kolk* / 15q24 microdeletion syndrome	15q24	613406	2				
Rubinstein-Taybi syndrome	16p13.3	180849	1				
Miller-Dieker syndrome	17p13.3	247200	2				
Lissencephaly-1	17p13.3	607432	Z				
Smith-Magenis syndrome	17p11.2	182290	2				
Potocki-Lupski syndrome	17p11.2	610883	3				
NF1 microdeletion syndrome	17q11.2	613675	2				
Koolen-de Vries syndrome	17q21.31	610443	2				
17q21.31 microduplication syndrome	17q21.31	613533	Z				
DiGeorge syndrome	22q11.21	188400					
22q11.2 microduplication syndrome	22q11.2	608363	5				
Distal 22q11.2 deletion syndrome	22q11.2	611867					
Phelan-McDermid syndrome	22q13	606232	2				
Rett syndrome	Xq28	312750	2				
MECP2 duplication syndrome	Xq28	300260	3				

* Please note that the *SIN3A* gene, which has been described as the critical gene in Witteveen-Kolk syndrome, is not covered by the probes in this P245 probemix.

Clinical background

Microdeletion and microduplication syndromes are defined as a group of clinically recognisable disorders characterised by a small (< 5 Mb) deletion or duplication of a chromosomal segment spanning one or multiple disease genes. The phenotype is the result of haploinsufficiency or overexpression of specific genes in the critical interval. Clinically well described syndromes, for which the involvement of multiple disease genes has been established or is strongly suspected, include DiGeorge syndrome (22q11 microdeletion), Williams-Beuren syndrome (7q11 microdeletion), Neurofibromatosis type 1 (17q11 microdeletion), Smith-Magenis Syndrome (17p microdeletion) and many more. Most patients with microdeletion/microduplication syndromes present with intellectual disability (ID), developmental delay (DD), congenital abnormalities and/or dysmorphic features.

Intellectual disability and developmental delay affects 1–3% of the population and results from extraordinary heterogeneous environmental, chromosomal and monogenic causes. Detailed analysis of the Online Mendelian Inheritance in Man (OMIM) database and literature searches revealed more than a thousand entries for ID and DD, and more than 290 genes involved in clinical phenotypes or syndromes, metabolic or neurological disorders characterised by ID/DD.

The genetic changes of microdeletions/duplications are often not detectable by the current band resolution using routine or high resolution karyotyping (2-5 Mb) but require the application of molecular cytogenetic techniques such as Fluorescence In Situ Hybridisation (FISH), MLPA or array Comparative Genomic Hybridisation (aCGH).

Exon numbering

The source of exon numbering used in the P245-B1 Coffalyser sheet is the exon numbering from the NM_ sequences as mentioned in the table below. As changes to the databases can occur after release of this product description, the NM_ sequence and exon numbering may not be up-to-date.

Gene	NM_ sequence
TNFRSF4	NM_003327.4
GNB1	NM_002074.5
GABRD	NM_000815.5
PEX13	NM_002618.4
REL	NM_002908.4
MBD5	NM_018328.5
SATB2	NM_015265.4
DLG1	NM_004087.2
WHSC1	NM_001042424.3
LETM1	NM_012318.3
SEMA5A	NM_003966.3
TERT	NM_198253.3
NSD1	NM_022455.5
ELN	NM_000501.4

Gene	NM_ sequence
TRPS1	NM_014112.5
EXT1	NM_000127.3
FANCC	NM_000136.3
PTCH1	NM_000264.5
GATA3	NM_001002295.2
SNRPN	NM_022807.5
UBE3A	NM_000462.5
SEMA7A	NM_003612.5
CYP1A1	NM_001319217.2
CREBBP	NM_004380.3
RAI1	NM_030665.4
LLGL1	NM_004140.4
DRC3	NM_031294.4
PAFAH1B1	NM_000430.4

Gene	NM_ sequence
NF1	NM_000267.3
MAPT	NM_016835.4
KANSL1	NM_001193466.2
GP1BB	NM_000407.5
PPIL2	NM_014337.4
SNAP29	NM_004782.4
CLDN5	NM_001130861.1
RTDR1	NM_014433.3
RABL2B	NM_007081.4
SHANK3	NM_001372044.2
DMD	NM_004006.3
MECP2	NM_004992.4

Probemix content

The SALSA MLPA Probemix P245-B1 Microdeletion Syndromes-1A contains 50 MLPA probes with amplification products between 130 and 499 nucleotides (nt). The probes detect sequences involved in a distinct subset of microdeletion and microduplication disorders (described above). Complete probe sequences are available online (www.mrcholland.com).

This probemix contains ten quality control fragments generating amplification products between 64 and 118 nt: four DNA Quantity fragments (Q-fragments), two DNA Denaturation fragments (D-fragments), one Benchmark fragment, and one chromosome X and two chromosome Y-specific fragments (see table below).

More information on how to interpret observations on these control fragments can be found in the MLPA General Protocol and online at www.mrcholland.com.

Length (nt)	Name
64-70-76-82	Q-fragments (only visible with <100 ng sample DNA)
88-96	D-fragments (low signal indicates incomplete denaturation)
92	Benchmark fragment
100	X-fragment (X chromosome specific)
105-118	Y-fragments (Y chromosome specific)

MLPA technique

The principles of the MLPA technique (Schouten et al. 2002) are described in the MLPA General Protocol (www.mrcholland.com).

MLPA technique validation

Internal validation of the MLPA technique using 16 DNA samples from healthy individuals of the same sex is required, in particular when using MLPA for the first time, or when changing the sample handling procedure, DNA extraction method or instruments used. This validation experiment should result in a standard deviation ≤ 0.10 for all probes over the experiment.

Required specimens

Extracted DNA from peripheral blood, buccal swabs, (un)cultured amniotic fluid obtained in week 16 of the pregnancy or later and free from blood contamination, (un)cultured chorionic villi free from maternal contamination, or foetal blood, free from impurities known to affect MLPA reactions. For more information please refer to the section on DNA sample treatment found in the MLPA General Protocol.

Reference samples

A sufficient number (\geq 3) of reference samples should be included in each MLPA experiment for data normalisation. All samples tested, including reference DNA samples, should be derived from the same tissue type, handled using the same procedure, and prepared using the same DNA extraction method when possible. Reference samples should be derived from different unrelated individuals who are from families without a history of developmental delay, intellectual disability and/or congenital anomalies. It is recommended to use samples of the same sex to facilitate interpretation. More information regarding the selection and use of reference samples can be found in the MLPA General Protocol (www.mrcholland.com).

Positive control DNA samples

MRC Holland cannot provide positive DNA samples. Inclusion of a positive sample in each experiment is recommended. Coriell Institute (https://catalog.coriell.org) and Leibniz Institute DSMZ (https://www.dsmz.de/) have diverse collections of biological resources which may be used as positive control DNA samples in your MLPA experiments. The table below shows the sample ID numbers from the Coriell Institute that have been tested with this P245-B1 probemix at MRC-Holland and can be used as positive control samples. The quality of cell lines can change; therefore samples should be validated before use.

Sample ID	Disorder	Affected probes
NA22995	1p36 deletion syndrome	Deletion 130, 178 and 160 nt probes
NA11213	Glass syndrome	Deletion 485 and 391 nt probes
NA11428	3q29 microduplication syndrome	Duplication 355 and 422 nt probes
NA04126	Wolf-Hirschhorn syndrome	Deletion 232 and 454 nt probes
NA16593	Cri-du-Chat syndrome	Deletion 283 nt probe
NA13464	Williams-Beuren syndrome	Deletion 364 and 315 nt probes
NA20375	Angelman syndrome	Deletion 244, 300 and 166 nt probes
NA09208	Miller-Dieker syndrome	Deletion 142 and 238 nt probes

Sample ID	Disorder	Affected probes
NA13476	Smith-Magenis syndrome	Deletion 471, 278 and 307 nt probes
NA02944	DiGeorge syndrome	Deletion 196 and 208 nt probes
NA23635	Rett syndrome	Deletion 184 nt probe
NA23675	MECP2 duplication syndrome	Duplication 148, 184 and 202 nt probes
NA23676	MECP2 duplication syndrome	Duplication 148, 184 and 202 nt probes

Performance characteristics

Clinical performance is mainly dependent on the populations or cohort studied. According to literature, approximately 10-20% of patients with congenital anomalies, (neuro)developmental delay or intellectual disability tested with the P245 probemix show microdeletions or microduplications, which leads to a significant diagnostic yield in testing for intellectual disability syndromes and/or chromosomal imbalances.

Analytical performance can be compromised by: SNVs or other polymorphisms in the DNA target sequence, impurities in the DNA sample, incomplete DNA denaturation, the use of insufficient or too much sample DNA, the use of insufficient or unsuitable reference samples, problems with capillary electrophoresis or a poor data normalisation procedure and other technical errors. The MLPA General Protocol contains technical guidelines and information on data evaluation/normalisation.

Data analysis

Coffalyser.Net software should be used for data analysis in combination with the appropriate lot-specific MLPA Coffalyser sheet. For both, the latest version should be used. Coffalyser.Net software is freely downloadable at www.mrcholland.com. Use of other non-proprietary software may lead to inconclusive or false results. For more details on MLPA quality control and data analysis, including normalisation, see the Coffalyser.Net Reference Manual.

Interpretation of results

The expected results for the probes detecting autosomal sequences are allele copy numbers of 2 (normal), 1 (heterozygous deletion) or 3 (heterozygous duplication). In rare cases, copy numbers of 0 (homozygous deletion) or 4 (heterozygous triplication/homozygous duplication) may be obtained. The same results can be expected for the X-chromosome-specific probes in female samples. For the X-chromosome-specific probes in male samples, expected allele copy numbers are 1 (normal), 0 (deletion) or 2 (duplication).

The standard deviation of each individual probe over all the reference samples should be ≤ 0.10 . When this criterion is fulfilled, the following cut-off values for the final ration (FR) of the probes can be used to interpret MLPA results when **reference samples of the same sex** have been used:

Copy number status		
Autosomal sequences and X chromosome sequences in females	X chromosome sequences in males	Final ratio (FR)
Normal	Normal	0.80 < FR < 1.20
Homozygous deletion	Deletion	FR = 0
Heterozygous deletion		0.40 < FR < 0.65
Heterozygous duplication		1.30 < FR < 1.65
Heterozygous triplication/homozygous duplication	Duplication	1.75 < FR < 2.15
Ambiguous copy number		All other values

Note: The term "dosage quotient", used in older product description versions, has been replaced by "final ratio" to become consistent with the terminology of the Coffalyser.Net software. (Calculations, cut-offs and interpretation remain unchanged.) Please note that the Coffalyser.Net software also shows arbitrary borders as part of the statistical analysis of results obtained in an experiment. As such, arbitrary borders are different from the final ratio cut-off values shown here above.

- <u>Arranging probes</u> according to chromosomal location facilitates interpretation of the results and may reveal more subtle changes such as those observed in mosaic cases. Analysis of parental samples may be necessary for correct interpretation of complex results.
- False positive results: Please note that abnormalities detected by a single probe (or multiple consecutive probes) still have a considerable chance of being a false positive result. Sequence changes (e.g. SNVs, point mutations) in the target sequence detected by a probe can be one cause. Incomplete DNA denaturation (e.g. due to salt contamination) can also lead to a decreased probe signal, in particular for probes located in or near a GC-rich region. The use of an additional purification step or an alternative DNA extraction method may resolve such cases. Additionally, contamination of DNA samples with cDNA or PCR amplicons of individual exons can lead to an increased probe signal (Varga et al. 2012). Analysis of an independently collected secondary DNA sample can exclude these kinds of contamination artefacts.
- <u>Normal copy number variation</u> in healthy individuals is described in the database of genomic variants: <u>http://dgv.tcag.ca/dgv/app/home</u>. Users should always consult the latest update of the database and scientific literature when interpreting their findings.
- <u>Not all abnormalities detected by MLPA are pathogenic</u>. In some genes, intragenic deletions are known that result in very mild or no disease (as described for *DMD* by Schwartz et al. 2007). For many genes, more than one transcript variant exists. Copy number changes of exons that are not present in all transcript variants may not have clinical significance. Duplications that include the first or last exon of a gene (e.g. exons 1-3) might not result in inactivation of that gene copy.
- <u>False results can be obtained if one or more peaks are off-scale</u>. For example, a duplication of one or more
 exons can be obscured when peaks are off-scale, resulting in a false negative result. The risk on off-scale
 peaks is higher when probemixes are used that contain a relatively low number of probes. Coffalyser.Net
 software warns for off-scale peaks while other software does not. If one or more peaks are off-scale, rerun
 the PCR products using either: a lower injection voltage or a shorter injection time, or a reduced amount
 of sample by diluting PCR products.

P245-specific notes:

- There are no dedicated reference probes in this probemix but instead all probes are used for normalisation.
 Data generated by this probemix can be normalised intra-sample by dividing the peak height of each amplification product by the combined peak height of all peaks in that sample (global normalisation).
 Secondly, inter-sample normalisation can be achieved by dividing the intra-normalised probe ratio in a sample by the average intra-normalised probe ratio of all reference samples.
- Data normalisation should be performed within one experiment. It is recommended to analyse male and female samples separately and only use male reference samples for the analysis of male test samples and only use female reference samples for the analysis of female test samples.

Limitations of the procedure

- The P245 probemix has a limited number of probes for each specific chromosomal region and will therefore not detect all possible causes of the syndromes included. The detection rate may vary between syndromes, depending on the heterogeneity of the disorder.
- For Prader-Willi and Angelman syndromes, the P245 probemix can only be used to detect copy number changes of the 15q11.2 region. Probes for the detection of methylation changes at this locus are present in the ME028 Prader-Willi/Angelman probemix.
- MLPA cannot detect any changes that lie outside the target sequence of the probes and will not detect copy number neutral inversions or translocations. Even when MLPA did not detect any aberrations, the possibility remains that biological changes in that gene or chromosomal region *do* exist but remain undetected.
- Sequence changes (e.g. SNVs, point mutations) in the target sequence detected by a probe can cause false positive results. Mutations/SNVs (even when >20 nt from the probe ligation site) can reduce the probe signal by preventing ligation of the probe oligonucleotides or by destabilising the binding of a probe oligonucleotide to the sample DNA.

Confirmation of results

Copy number changes detected by only a single probe always require confirmation by another method. An apparent deletion detected by a single probe can be due to e.g. a mutation/polymorphism that prevents ligation or destabilises the binding of probe oligonucleotides to the DNA sample. Sequence analysis can establish whether mutations or polymorphisms are present in the probe target sequence. The finding of a heterozygous mutation or polymorphism indicates that two different alleles of the sequence are present in the sample DNA and that a false positive MLPA result was obtained.

Copy number changes detected by more than one consecutive probe should be confirmed by another independent technique such as long range PCR, qPCR, array CGH or Southern blotting, whenever possible. Deletions/duplications of more than 50 kb in length can often be confirmed by FISH. Furthermore, copy number changes detected by the P245 probemix can be confirmed by using a syndrome-specific MLPA probemix (see notes at Table 2).

Database of genomic variation and phenotype in humans using Ensembl resources (DECIPHER)

https://decipher.sanger.ac.uk/ We strongly encourage users to deposit positive results in the DECIPHER Database. Recommendations for the nomenclature to describe deletions/duplications of one or more exons can be found on http://varnomen.hgvs.org/.

Please report false positive results due to SNVs and unusual results (e.g., a duplication of two probes that are not consecutive in location) to MRC Holland: info@mrcholland.com.

Table 1. SALSA MLPA Probemix P245-B1 Microdeletion Syndromes-1A

Length (nt)	SALSA MLPA probe	Chromosomal position (hg18)	Syndrome detected
64-118	Control fragments – see table in pro	bemix content sectio	n for more information
130 «	TNFRSF4 probe 02269-L01761	1p36.33	1p36 deletion syndrome
136	GATA3 probe 07632-L07317	10p14	DiGeorge syndrome-2
142	PAFAH1B1 probe 04120-L03532	17p13.3	Miller-Dieker syndrome / Lissencephaly-1
148 «	MECP2 probe 09310-L13824	Xq28	Rett syndrome / MECP2 duplication syndrome
154	NSD1 probe 02595-L23366	5q35.3	Sotos syndrome
160 «	GABRD probe 04690-L04068	1p36.33	1p36 deletion syndrome
166	UBE3A probe 10877-L11547	15q11.2	Prader-Willi / Angelman syndrome
172 «	CREBBP probe 03087-L02487	16p13.3	Rubinstein-Taybi syndrome
178	GNB1 probe 02890-L02511	1p36.33	1p36 deletion syndrome
184 «	MECP2 probe 15319-L17592	Xq28	Rett syndrome / MECP2 duplication syndrome
190	SEMA7A probe 18316-L23369	15q24.1	Witteveen-Kolk / 15q24 microdeletion syndrome
196	CLDN5 probe 01218-L06270	22q11.21	DiGeorge / 22q11.2 duplication syndrome
202 «	MECP2 probe 03409-L16570	Xq28	Rett syndrome / MECP2 duplication syndrome
208 « ±	GP1BB probe 05464-L15184	22q11.21	DiGeorge / 22q11.2 duplication syndrome
214	MBD5 probe 15311-L17110	2q23.1	2q23.1 microdeletion/microduplication syndrome
220	PPIL2 probe 07530-L22697	22q11.21	Distal 22q11.2 deletion syndrome
226 ±	REL probe 17474-L22693	2p16.1	2p16.1-p15 microdeletion syndrome
232 «	LETM1 probe 04190-L05920	4p16.3	Wolf-Hirschhorn syndrome
238	PAFAH1B1 probe 16348-L22830	17p13.3	Miller-Dieker syndrome / Lissencephaly-1
244	SNRPN probe 12178-L13826	15q11.2	Prader-Willi / Angelman syndrome
252 «	SHANK3 probe 12031-L13828	22q13.33	Phelan-McDermid syndrome
260	NF1 probe 11732-L13830	17q11.2	NF1 microdeletion syndrome
265 «	RTDR1 probe 08484-L22698	22q11.22	Distal 22q11.2 deletion syndrome
272	MAPT probe 08365-L22699	17q21.31	Koolen-de Vries syndrome
278	DRC3 probe 01452-L20745	17p11.2	Smith-Magenis / Potocki-Lupski syndrome
283	SEMA5A probe 14265-L22700	5p15.2	Cri-du-Chat syndrome
292	DMD probe 01411-L23371	Xp21.1	X-chromosome copy number
300	SNRPN probe 01318-L23196	15q11.2	Prader-Willi / Angelman syndrome
307 «	LLGL1 probe 01453-L22689	17p11.2	Smith-Magenis / Potocki-Lupski syndrome
315 «	ELN probe 16349-L22813	7q11.23	Williams-Beuren syndrome
323	PTCH1 probe 03702-L22814	9q22.32	9q22.3 microdeletion syndrome
331∫	CYP1A1 probe 06811-L22815	15q24.1	Witteveen-Kolk / 15q24 microdeletion syndrome
339	NF1 probe 02507-L22694	17q11.2	NF1 microdeletion syndrome
346	KANSL1 probe 18172-L22729	17q21.31	Koolen-de Vries syndrome
355	DLG1 probe 08395-L08249	3q29	3q29 microdeletion/microduplication syndrome
364	ELN probe 01336-L00878	7q11.23	Williams-Beuren syndrome
373	SNAP29 probe 16748-L19368	22q11.21	DiGeorge / 22q11.2 duplication syndrome
382	RABL2B probe 06734-L05558	22q13.33	Phelan-McDermid syndrome
391	SATB2 probe 15315-L17114	2q33.1	Glass syndrome
401 «	TRPS1 probe 03081-L07411	8q23.3	Langer-Giedion syndrome
411	MBD5 probe 15313-L22691	2q23.1	2q23.1 microdeletion/microduplication syndrome
422	DLG1 probe 08401-L15187	3q29	3q29 microdeletion/microduplication syndrome
429	EXT1 probe 15322-L17698	8q24.11	Langer-Giedion syndrome
436	FANCC probe 04460-L22816	9q22.32	9q22.3 microdeletion syndrome
445	TERT probe 03761-L22817	5p15.33	Cri-du-Chat syndrome
454	WHSC1 probe 10633-L14379	4p16.3	Wolf-Hirschhorn syndrome
462	NSD1 probe 02600-L15191	5q35.3	Sotos syndrome
471	RAI1 probe 11730-L15192	17p11.2	Smith-Magenis / Potocki-Lupski syndrome
485	SATB2 probe 15318-L19750	2q33.1	Glass syndrome
499	PEX13 probe 09870-L15194	2p15	2p16.1-p15 microdeletion syndrome

« Probe located within, or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

± SNP rs749912012 could influence the 208 nt probe signal. SNP rs747391156 could influence the 226 nt probe signal. In case of apparent deletions, it is recommended to sequence the region targeted by these probes. [Probe is very sensitive to pipetting mistakes.

SNVs located in the target sequence of a probe can influence probe hybridization and/or probe ligation. Please note: not all known SNVs are mentioned in the tables above. Single probe aberration(s) must be confirmed by another method.

Table 2. P245-B1 probes arranged according to chromosomal location

Table 2a. 1p36 deletion syndrome

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	<u>Partial</u> sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
	02270-L01762	TNFRSF18		P070 probe for 1p36	8 kb
130 «	02269-L01761	TNFRSF4	01-001.14	GCCGGCCAGCAA-TAGCTCGGACGC	609 kb
178	02890-L02511	GNB1	01-001.75	CTAAGATCGGAA-GATGAGTGAGCT	200 kb
160 «	04690-L04068	GABRD	01-001.95	CGGCGACTACGT-GGGCTCCAACCT	

• SALSA MLPA probemix P147 contains more probes targeting 1p36 sequences.

 Deletions in the 1p36 region have been reported to be a frequent cause of developmental delay and intellectual disability with a frequency between 1:5,000 and 1:10,000 births. The majority of cases encompass terminal deletions that should also be detected by SALSA MLPA probemixes P036 and P070. Several interstitial deletions and complex rearrangements have been described. The *TNFRSF4* probes in P245 and P036 detect the same sequence.

More information on 1p36 deletion syndrome can be found in OMIM 607872. Patients with 1p36 deletion syndrome
present with typical craniofacial features, brachy/camptodactyly, short feet, and developmental delay and intellectual
disability of variable degree. Hypotonia, seizures, structural brain abnormalities, and congenital heart defect may occur
as well.

Table 2b. 2p16.1-p15 microdeletion syndrome

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	Partial sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
226 ±	17474-L22693	REL	02-061.00	TATCACAGAACC-CGTAACAGTAAA	127 kb
499	09870-L15194	PEX13	02-061.13	TGAGGATGACCA-TGTAGTTGCCAG	

• The interstitial 2p16.1-p15 microdeletion syndrome has been described first by Rajcan-Separovic et al. (2007). Until now, several patients with variable deletion lengths on chromosome 2p16.1-p15 have been described.

• More information on 2p16.1-p15 microdeletion syndrome can be found in OMIM 612513. Phenotype includes delayed psychomotor development, intellectual disability, and dysmorphic features. Many patients have behavioural disorders, as well as structural brain abnormalities.

Table 2c. 2q23.1 microdeletion/microduplication syndrome

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	Partial sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
214	15311-L17110	MBD5	02-148.93	CCAGCTATACAA-GTTCCTGTGGGT	54 kb
411	15313-L22691	MBD5	02-148.99	CTGGAGATCTTC-CTCCTCTTGGGT	

• Information on the interstitial 2q23.1 microdeletion syndrome is e.g. present in Mullegama et al. (2015). Microduplications of 2q23.1 have e.g. been described by Chung et al. (2012). Disruption of the *MBD5* gene is considered to be causative for the phenotype.

 More information on 2q23.1 microdeletion/microduplication syndrome can be found in OMIM 156200. Information on MBD5 haploinsufficiency can be found in https://www.ncbi.nlm.nih.gov/books/NBK390803/. Patients with 2q23.1 microdeletion or microduplication syndrome often present with intellectual disability, speech impairment, epilepsy, short stature, characteristic facial features, and autism.

Table 2d. Glass syndrome (2q32-q33 microdeletion syndrome)

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	<u>Partial</u> sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
485	15318-L19750	SATB2	02-199.90	TGCCATTTATGA-CGAGATCCAACA	110 kb
391	15315-L17114	SATB2	02-200.01	AGAGAAGAACAC-GCCGAGTTTGTC	

Information on the interstitial 2q32-q33 microdeletion syndrome is e.g. present in Balasubramanian et al. (2011). Glass syndrome patients with variable deletion lengths have been described. Almost all of them involve the SATB2 gene, which is considered the main cause of the phenotype.

• More information on Glass syndrome can be found in OMIM 612313. Phenotype includes severe intellectual disability, seizures, growth retardation, and tooth abnormalities.

Table 2e. 3q29 microdeletion/microduplication syndrome

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	<u>Partial</u> sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
355	08395-L08249	DLG1	03-198.28	CTATGAAAGACA-GGATAAATGATG	231 kb
422	08401-L15187	DLG1	03-198.51	CAGCTCAGAAGT-TCCATAGAACGG	250 kb
	02013-L02052	BDH1		P036 probe for 3q	
	02690-L02842	KIAA0226	P070 probe fo	r 3q. Located between the telomere and the nicrodeletion syndrome region.	

• The P036 probe for the *BDH1* gene is also located in the commonly deleted region. However, the *KIAA0226* probe in P070 is not, as it is located between the commonly deleted region and the telomere.

• A microduplication of the 3q29 region (OMIM 611936) has been described once (Lisi et al. 2008). Phenotype includes mild to moderate intellectual disability and minor dysmorphic features.

More information on 3q29 microdeletion syndrome can be found in OMIM 609425. Phenotype can vary widely between
patients and may include mild to moderate intellectual disability, dysmorphic features, autism, chest wall deformities,
and ataxia.

Table 2f. Wolf-Hirschhorn syndrome, 4p16.3

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	<u>Partial</u> sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
	02005-L02047	PIGG		P036 probe for 4p	
	14440-L16146	PIGG		P070 probe for 4p	
232 «	04190-L05920	LETM1	04-001.81	CCTGTGTACACA-TCCTCCAGAGGC	52 kb
454	10633-L14379	WHSC1	04-001.87	GTGGGCATTTAT-TTTCCCTTAATG	

 The most frequent cause is a terminal deletion of 4p16.3 that can also be detected by the telomeric probemixes P036 and P070.

• The WHS critical region is located approximately 1.9 Mb from the telomere and includes the WHSC1 gene.

More information on Wolf-Hirschhorn syndrome can be found in OMIM 194190. Phenotype includes a variable degree
of developmental delay and intellectual disability, seizures and skeletal anomalies.

Length SALSA MLPA Partial sequence^a (24 nt adjacent to Distance to Gene MV36/hg18 probe (nt) ligation site) next probe CCDC127 P070 probe for 5p 02791-L02233 109 kb 01723-L1327 PDCD6 P036 probe for 5p 968 kb 445 03761-L22817 TERT 05-001.34 TCTTTCTTTTAT-GTCACGGAGACC 8155 kb 05-009.49 ACTTGGGCTGGA-GTGCCCACGTGG 283 14265-L22700 SEMA5A

Table 2g. Cri-du-Chat syndrome, 5p15

• The most frequent cause of the Cri-du-Chat syndrome is a terminal deletion of 5p15 that can also be detected by the telomeric probemixes P036 and P070. Interstitial deletions have also been described (Zhang et al. 2005). Some interstitial deletions will not be detected by the two 5p15 probes in this P245 probemix.

• More information on Cri-du-Chat syndrome can be found in OMIM 123450. Clinical features include severe psychomotor retardation, intellectual disability and the characteristic cat-like cry.

Table 2h. Sotos syndrome, 5q35.3

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	Partial sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
154	02595-L23366	NSD1	05-176.62	ACCCACCCACTG-TTATGCAGAACA	32 kb
462	02600-L15191	NSD1	05-176.65	GGAAAGACTGTT-TGCAAATGTGGA	

More probes for the NSD1 gene are present in the P026 Sotos probemix.

 Of all NSD1 mutations detected, ~10% (non-Japanese population) to ~45% (Japanese population) are complete gene deletions. Reciprocal duplications cause the opposite phenotype of Sotos syndrome (Franco et al. 2010).

• Distance from the *NSD1* gene to the 5q telomeric probes in P036 and P070 is approximately 3950 kb. Sotos syndrome is mainly caused by point mutations in the *NSD1* gene which will not be detected by MLPA.

More information on Sotos syndrome can be found on: http://www.ncbi.nlm.nih.gov/books/NBK1479/ and in OMIM 117550. Sotos syndrome is characterised by excessive physical growth in infancy and macrocephaly, and may be accompanied by autism, mild intellectual disability and delayed motor development.

Table 2i. Williams-Beuren syndrome / Williams-Beuren duplication syndrome, 7q11.23

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	Partial sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
364	01336-L00878	ELN	07-073.11	TTTCCCGGCTTT-GGTGTCGGAGTC	12 kb
315 «	16349-L22813	ELN	07-073.12	ACCTCATCAACG-TTGGTGCTACTG	

More probes in the Williams-Beuren syndrome (WBS) region are present in the P029 WBS probemix. The majority (>90%) of the WBS patients have a 1.6 Mb deletion that includes the ELN and LIMK1 genes. A deletion of the 7q11.23

chromosomal region, including the *ELN* gene is found in approximately 90-95% of the clinically typical WBS patients but in a lower percentage of atypical cases.

- Besides deletions of the WBS region, some duplications have also been described, giving rise to the Williams-Beuren duplication syndrome (OMIM 609757).
- More information on Williams-Beuren syndrome can be found on http://www.ncbi.nlm.nih.gov/books/NBK1249/ and in OMIM 194050. Williams-Beuren syndrome is characterised by supravalvular aortic stenosis (SVAS), infantile hypercalcemia, mental retardation, and distinctive facial features.

Table 2j. Langer-Giedion syndrome, 8q24.11-q24.13

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	<u>Partial</u> sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
401 «	03081-L07411	TRPS1	08-116.75	CTCTTTTTTGGT-GCTGCTGGTTTC	2168 kb
429	15322-L17698	EXT1	08-118.92	GGTGATAATGTT-AAACCCACTTAA	

More probes for the Langer-Giedion region are present in the P215 EXT probemix.

 Most Langer-Giedion syndrome (LGS) patients have a microdeletion that includes the TRPS1 and EXT1 genes. LGS is also known as trichorhinophalangeal syndrome type II (TRPS2).

 More information on LGS can be found in OMIM 150230. Phenotype includes multiple dysmorphic facial features, multiple cartilaginous exostoses, redundant skin, sparse scalp hair and mild to moderate intellectual disability.

Table 2k. 9q22.3 microdeletion syndrome

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	<u>Partial</u> sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
436	04460-L22816	FANCC	09-096.90	GATAACTCACGA-GATCATTGGCTT	377 kb
323	03702-L22814	PTCH1	09-097.28	GTTAATGACTCC-CAAGCAAATGTA	

 An interstitial 9q22.3 microdeletion syndrome has been described by Redon et al. 2006. Clinical phenotype includes mental retardation, overgrowth and trigonocephaly. Please note that their patients had a 6 Mb deletion.

Microduplications of 9q22.3, spanning at least the PTCH1 gene, have been described (Izumi et al. 2011; Weise et al. 2012).

The clinical spectrum of the 9q22.3 microdeletion is variable and the clinical findings depend on the size of the
microdeletion. All reported 9q22.3 microdeletions include the *PTCH1* gene, which is involved in Gorlin syndrome (nevoid
basal cell carcinoma syndrome); therefore, all individuals with 9q22.3 microdeletion have the clinical findings of this
well-described disorder. Additional characteristics in 9q22.3 patients include seizures and developmental delay and/or
intellectual disability.

Table 2I. DiGeorge syndrome-2, 10p13-p14

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	Partial sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
136	07632-L07317	GATA3	10-008.14	GAGCAACGCAAT-CTGACCGAGCAG	

More probes for the 10p14 DiGeorge-2 region are present in probemix P250 DiGeorge.

• The majority of DiGeorge syndrome patients have a 22q11 deletion. In addition to this DiGeorge-2 region, deletion of the 17p terminal region can also cause a DiGeorge-like phenotype. These 17p deletions should be detectable by the P036 and P070 telomere probemixes.

• More information on DiGeorge syndrome-2 can be found in OMIM 601362. Phenotype includes similar features as described for DiGeorge syndrome (see Table 2t), however, phenotypes can vary widely between affected patients.

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	Partial sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
	07291-L08858	MKRN3		P036 probe for "15q"	120 kb
	04026-L01542	NDN		P070 probe for "15q"	1143 kb
244	12178-L13826	SNRPN	15-022.63	ACCACCACCTGA-TGAAAGATACAC	138 kb
300 #	01318-L23196	SNRPN	15-022.76	GATTCCTCGCTA-CTCCAATATGGC	441 kb
166	10877-L11547	UBE3A	15-023.20	AGTGTTATTGGA-AGTGAGCCACCA	

Table 2m. Prader-Willi / Angelman syndrome, 15q11.2

More probes for the Prader-Willi / Angelman region, including probes for the detection of methylation changes, are
present in the ME028 probemix.

• The majority of the Prader-Willi and Angelman patients have a copy number change of the 15q11.2 region that should be detected by this P245 probemix. However, a considerable number of patients (~30%) have a change in methylation status of the 15q11.2 region that can be detected by the ME028 probemix, but not with this P245 probemix.

More information on Prader-Willi syndrome (PWS) can be found on http://www.ncbi.nlm.nih.gov/books/NBK1330/ and syndrome OMIM 176270. More information on Angelman (AS) can be found in on http://www.ncbi.nlm.nih.gov/books/NBK1144/ and in OMIM 105830. PWS and AS are clinically distinct complex disorders. They both have characteristic neurologic, developmental, and behavioural phenotypes plus other structural and functional abnormalities. However, the cognitive and neurologic impairment is more severe in AS, including seizures and ataxia. The behavioural and endocrine disorders are more severe in PWS, including obsessive-compulsive symptoms and hypothalamic insufficiency.

Table 2n. Witteveen-Kolk syndrome / 15q24 microdeletion syndrome

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	<u>Partial</u> sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
190	18316-L23369	SEMA7A	15-072.49	TACCCACAGAGA-CCTTCCAGGTGG	308 kb
331∫	06811-L22815	CYP1A1	15-072.80	GTCAACCTGAAT-AATAATTTCGGG	

• Probes for other genes located in the 15q24 microdeletion syndrome region are present in the P297 probemix.

Please note that the SIN3A gene, which has been described as the critical gene in Witteveen-Kolk syndrome, is not
covered by the probes in this P245 probemix. Point mutations in this gene, leading to Witteveen-Kolk syndrome, cannot
be detected by the P245 probemix.

 More information on 15q24 microdeletion syndrome can be found in OMIM 613406. This syndrome has been termed Witteveen-Kolk syndrome (WITKOS) as described by Witteveen et al. (2016). Phenotype includes mild to severe intellectual disability, growth retardation, facial dysmorphisms, and failure to thrive.

Table 2o. Rubinstein-Taybi syndrome, 16p13.3

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	<u>Partial</u> sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
172 «	03087-L02487	CREBBP	16-003.87	AGCAGGTGAAAA-TGGCTGAGAACT	

• More probes for the CREBBP gene are present in the P313 CREBBP probemix.

• The 16p13.3 deletion syndrome (OMIM 610543) is caused by larger deletions that include the *CREBBP* gene and leads to a severe form of Rubinstein-Taybi syndrome.

- Only a minority of Rubinstein-Taybi patients (~10%) can be detected with the use of this single probe, since most patients have a point mutation in the *CREBBP* or *EP300* gene.
- More information on Rubinstein-Taybi syndrome can be found on http://www.ncbi.nlm.nih.gov/books/NBK1526/ and in OMIM 180849. Phenotype includes distinctive facial features, broad and often angulated thumbs and great toes, short stature, and moderate to severe intellectual disability.

Table 2p. Miller-Dieker syndrome / Lissencephaly-1, 17p13.3

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	<u>Partial</u> sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
142	04120-L03532	PAFAH1B1	17-002.51	TGTAGGCACTCT-ATAGATCAAGCT	2 kb
238 #	16348-L22830	PAFAH1B1	17-002.52	CCAGAAAAATAT-GCATTGAGTGGT	

• More probes for *PAFAH1B1* and other genes in the Miller-Dieker region are present in probemix P061 Lissencephaly.

• The majority of Lissencephaly-1 patients and nearly all Miller-Dieker patients have a chromosomal deletion that includes the *PAFAH1B1* gene. Several patients with a duplication in the Miller-Dieker region have been described, presenting with a large variety of clinical features (OMIM 613215).

 More information on these syndromes can be found on http://www.ncbi.nlm.nih.gov/books/NBK5189/, in OMIM 607432 (Lissencephaly-1), and OMIM 247200 (Miller-Dieker syndrome). Phenotype includes cortical malformations, typical facial features, and severe neurologic abnormalities.

Table 2q. Smith-Magenis syndrome / Potocki-Lupski syndrome, 17p11.2

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	<u>Partial</u> sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
471	11730-L15192	RAI1	17-017.57	CCAAGGATCTCA-TCTGGCCACCGC	264 kb
278	01452-L20745	DRC3	17-017.83	CGGATCTCCAAG-ATCGACTCCCTG	245 kb
307 «	01453-L22689	LLGL1	17-018.08	CAGCAGTCTGCA-TCTCTGGGAGAT	

• More probes for the Smith-Magenis region are present in the P369 Smith-Magenis probemix.

• The majority (90%) of Smith-Magenis syndrome (SMS) is caused by a 3.7 Mb interstitial deletion on chromosome 17p11.2. A duplication of the same region leads to a milder phenotype, known as Potocki-Lupski syndrome (PTLS).

More information on SMS and PTLS can be found on http://www.ncbi.nlm.nih.gov/books/NBK1310/, in OMIM 182290, and in OMIM 610883. SMS is characterised by distinctive physical features, developmental delay, cognitive impairment, behavioural abnormalities, and mild to moderate intellectual disability. PTLS is characterised by hypotonia, failure to thrive, intellectual disability, pervasive developmental disorders, and congenital anomalies.

Table 2r. NF1 microdeletion syndrome, 17q11.2

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	Partial sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
339	02507-L22694	NF1	17-026.58	GGATCATGAAGA-ATTACTACGTAC	113 kb
260	11732-L13830	NF1	17-026.69	TCTTGTTGTCTT-TGGGTGTATTAG	

 More probes for the NF1 gene are present in the P081 & P082 NF1 probemixes. More probes for other genes in this area are present in the P122 NF1-area probemix.

• Approximately 5-20% of all neurofibromatosis type 1 patients carry a heterozygous deletion of approximately 1.4 Mb that includes the *NF1* gene. Compared to patients with a point mutation, patients with a deletion of the *NF1* gene often present with a more severe phenotype.

 More information on NF1 microdeletion syndrome can be found in OMIM 613675. Information on neurofibromatosis type 1 can be found on https://www.ncbi.nlm.nih.gov/books/NBK1109/ and in OMIM 162200. The NF1 microdeletion

results in a phenotype that often includes facial dysmorphism, intellectual disability, developmental delay, and excessive early-onset neurofibromas.

Table 2s. Koolen-de Vries syndrome / 17q21.31 microduplication syndrome

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	Partial sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
272	08365-L22699	MAPT	17-041.46	GTCGCCAGTGGT-GTCTGGGGACAC	43 kb
346	18172-L22729	KANSL1	17-041.50	CCGCTTCTTACA-GCTCAGTACAGG	

More probes for the *MAPT* gene and other genes in the 17q21.31 region are present in the P275 MAPT-GRN probemix.
 The cause of Koolen-de Vries syndrome (KDVS) is a deletion of the *KANSL1* gene as described by Koolen et al. (2012). Patients with a duplication of the same region differ phenotypically from KDVS patients (Kirchoff et al. 2007; Grisart et al. 2009).

More information on KDVS can be found on http://www.ncbi.nlm.nih.gov/books/NBK24676/ and in OMIM 610443. The 17q21.31 microduplication syndrome is described in OMIM 613533.

Table 2t. DiGeorge / 22q11.2 duplication / Distal 22q11.2 deletion syndrome

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	Partial sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
	02725-L16344	IL17RA		P070 probe for 22q11	647 kb
	01740-L01310	BID		P036 probe for 22q11	1285 kb
196	01218-L06270	CLDN5, region AB	22-017.89	TTCGCCAACATT-GTCGTCCGCGAG	200 kb
208 « ±	05464-L15184	GP1BB, region AB	22-018.09	CACAACCGAGCT-GGTGCTGACCGG	1474 kb
373	16748-L19368	SNAP29, region CD	22-019.57	GTATCCACTTAC-CTGTATCATCCA	814 kb
220	07530-L22697	PPIL2; distal 22q11	22-020.38	GAAGAGCCCTCA-ACCAGTGCCACT	1354 kb
265 «	08484-L22698	RTDR1; distal 22q11	22-021.73	GGTGTGTCATTT-TGACGTCATCCC	

• More probes for the 22q11 DiGeorge region are present in the P250 DiGeorge probemix.

 Deletions in 22q11 are the most frequent cause of DiGeorge syndrome. These 22q11 deletions can be variable in size. The majority (~85%) include the AB, BC and CD regions, although some deletions are smaller (AB only) or larger.

- Cat eye syndrome patients can be detected with the probes in the P036 and P070 telomere probemixes, but not by the probes in this P245 mix.
- More information on DiGeorge syndrome can be found on http://www.ncbi.nlm.nih.gov/books/NBK1523/ and in OMIM 188400. A wide variety of clinical symptoms are known to be associated with DiGeorge syndrome, including congenital heart disease, palatal abnormalities, characteristic facial features, learning difficulties, immune deficiency, and hypocalcaemia.
- The chromosome 22q11.2 distal deletion syndrome (OMIM 611867) has been described by e.g. Ben-Shachar et al. (2008). This syndrome frequently results in developmental delay, growth delay and mild skeletal abnormalities.
- Several distal 22q11 duplications have been described (reviewed by Pinchefsky et al. 2017). These distal 22q11 duplications can be variable in size and may be detected by the 220 nt and/or 265 nt probes in this P245 mix.

	Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	Partial sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
		02707-L00661	ARSA		P070 probe for 22q13	48 kb
ſ	252 «	12031-L13828	SHANK3	22-049.46	AAGCGGCGAGTT-TATGCCCAGAAC	91 kb
ſ	382 #	06734-L05558	RABL2B	22-049.55	AATACACAAGCC-GTAAAATCGAGT	
				•		

Table 2u. Phelan-McDermid syndrome, 22q13

• More probes in the Phelan-McDermid region are present in the P188 22q13 probemix.

• The SHANK3 gene is suspected to be responsible for at least part of the Phelan-McDermid syndrome phenotype. The RABL2B probe in P036 is located between SHANK3 and the 22q telomere. The RABL2B probes in P245 and P036 detect almost the same sequences.

 More information on Phelan-McDermid syndrome can be found on http://www.ncbi.nlm.nih.gov/books/NBK1198/ and in OMIM 606232. Phenotype includes neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, autistic behaviour, and minor dysmorphic features. Most individuals have moderate to profound intellectual disability.

Table 2v. X chromosome copy number changes

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	Partial sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
292	01411-L23371	DMD	X-031.56	AAACTCATAGAT-TACTGCAACAGT	

• This *DMD* probe is intended to be used to distinguish *MECP2* duplications from X chromosome copy number alterations. This probe must not be used to detect defects in the *DMD* gene.

Table 2w. Rett syndrome / MECP2 duplication syndrome, Xq28

Length (nt)	SALSA MLPA probe	Gene	MV36/hg18	<u>Partial</u> sequence ^a (24 nt adjacent to ligation site)	Distance to next probe
202 «	03409-L16570	Exon 1	X-153.02	CATTAATCCTTA-ACATTCAAATTC	65 kb
184 «	15319-L17592	Exon 3	X-152.95	ACTTGTTCTGCA-GACTGGCATGTT	2 kb
148 «	09310-L13824	Exon 4	X-152.95	TTTCATCCTCCA-TGCCAAGGCCAA	

 More probes for the MECP2 gene are present in the P015 MECP2 probemix. More probes in the Xq28 region are present in the P049 SLC6A8 – ABCD1 probemix.

• Approximately 8% of Rett syndrome patients have a deletion involving the *MECP2* gene. A duplication of this gene appears to be a relatively frequent cause of intellectual disability, leading to the *MECP2* duplication syndrome (also known as Lubs X-linked mental retardation syndrome or MRXSL).

More information on Rett syndrome can be found on http://www.ncbi.nlm.nih.gov/books/NBK1497/ and in OMIM 312750. More information on MECP2 duplication syndrome can be found https://www.ncbi.nlm.nih.gov/books/NBK1284/ and in OMIM 300260. Rett syndrome almost exclusively affects females and clinical features include small hands and feet, deceleration of the rate of head, and repetitive stereotyped hand movements. Gastrointestinal disorders, seizures and scoliosis occur in most patients. The MECP2 duplication syndrome largely affects young males. Symptoms include infantile hypotonia, delayed psychomotor development leading to severe intellectual disability, impaired speech, epilepsy, recurrent infections, and early death.

^a Only partial probe sequences are shown. Complete probe sequences are available at www.mrcholland.com. Please notify us of any mistakes: info@mrcholland.com.

« Probe located within, or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

 \pm SNP rs749912012 could influence the 208 nt probe signal. SNP rs747391156 could influence the 226 nt probe signal. In case of apparent deletions, it is recommended to sequence the region targeted by these probes.

This probe's specificity relies on a single nucleotide difference compared to a related gene or pseudogene. As a result, an apparent duplication of only this probe can be the result of a non-significant single nucleotide sequence change in the related gene or pseudogene.

∫ Probe is very sensitive to pipetting mistakes.

SNVs located in the target sequence of a probe can influence probe hybridization and/or probe ligation. Please note: not all known SNVs are mentioned in the tables above. Single probe aberration(s) must be confirmed by another method.

Notes

- More information on human genes and genetic disorders can be found on the OMIM website: https://www.ncbi.nlm.nih.gov/omim.
- Explanation for the column named 'MV36/hg18': 01-001.14 indicates that a probe is on chromosome 1, at 1.14 Mb distance from the p-telomere, according to NCBI Build 36/hg18 reference sequence.

Related SALSA MLPA probemixes

P036/P070 Subtelomeres	These probemixes contain probes for subtelomeric regions.
P064 Microdeletion Syndromes-1B	Contains probes for 1p36 deletion, Wolf-Hirschhorn, Cri-du-Chat, Sotos, Saethre- Chotzen, Williams-Beuren, Langer-Giedion, WAGR, Prader-Willi/Angelman, Rubinstein-Taybi, Miller-Dieker, Smith-Magenis, Alagille, DiGeorge, and Phelan- McDermid syndrome.
P106 X-linked ID	Contains probes for various genes involved in X-linked intellectual disability.
P297 Microdeletion Syndromes-2	Contains probes for microdeletion syndromes on 1q21.1, 3q29, 15q13, 15q24, 16p13- 11, and 17q12.

Several MLPA probemixes for specific syndromes are available, such as P250 DiGeorge, ME028 Prader-Willi/Angelman, P061 Lissencephaly and P029 WBS. Please see Table 2 or on www.mrcholland.com.

References

- Balasubramanian M et al. (2011). Case series: 2q33.1 microdeletion syndrome--further delineation of the phenotype. *J Med Genet*. 48(5):290-298.
- Ben-Shachar S et al. (2008). 22q11.2 distal deletion: a recurrent genomic disorder distinct from DiGeorge syndrome and velocardiofacial syndrome. *Am J Hum Genet*. 82(1):214-221.
- Chung BH et al. (2012). Severe intellectual disability and autistic features associated with microduplication 2q23.1. *Eur J Hum Genet.* 20(4):398-403.
- Franco LM et al. (2010). A syndrome of short stature, microcephaly and speech delay is associated with duplications reciprocal to the common Sotos syndrome deletion. *Eur J Hum Genet.* 18(2):258-261.
- Grisart B et al. (2009). 17q21.31 microduplication patients are characterised by behavioural problems and poor social interaction. *J Med Genet.* 46(8):524-530.
- Izumi K et al. (2011). Familial 9q22.3 microduplication spanning PTCH1 causes short stature syndrome with mild intellectual disability and dysmorphic features. *Am J Med Genet A*. 155A(6):1384-1389.
- Kirchhoff M et al. (2007). A 17q21.31 microduplication, reciprocal to the newly described 17q21.31 microdeletion, in a girl with severe psychomotor developmental delay and dysmorphic craniofacial features. *Eur J Med Genet.* 50(4):256-263.
- Koolen DA et al. (2012). Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. *Nat Genet.* 44(6):639-641.
- Lisi EC et al. (2008). 3q29 interstitial microduplication: a new syndrome in a three-generation family. *Am J Med Genet A*. 146A(5):601-609.
- Mullegama SV et al. (2015). Phenotypic and molecular convergence of 2q23.1 deletion syndrome with other neurodevelopmental syndromes associated with autism spectrum disorder. *Int J Mol Sci.* 16(4):7627-7643.
- Pinchefsky E et al. (2017). Distal 22q11.2 microduplication: Case report and review of the literature. *Child Neurol Open.* 4:2329048X17737651.
- Rajcan-Separovic E et al. (2007). Clinical and molecular cytogenetic characterisation of a newly recognised microdeletion syndrome involving 2p15-16.1. *J Med Genet*. 44(4):269-276.
- Redon R et al. (2006). Interstitial 9q22.3 microdeletion: clinical and molecular characterisation of a newly recognised overgrowth syndrome. *Eur J Hum Genet.* 14(6):759-767.
- Schouten JP et al. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligationdependent probe amplification. *Nucleic Acids Res.* 30:e57.
- Schwartz M et al. (2007). Deletion of exon 16 of the dystrophin gene is not associated with disease. *Hum Mutat.* 28:205.
- Varga RE et al. (2012). MLPA-based evidence for sequence gain: pitfalls in confirmation and necessity for exclusion of false positives. *Anal Biochem.* 421:799-801.
- Weise A et al. (2012). Microdeletion and microduplication syndromes. *J Histochem Cytochem*. 60(5):346-358.
- Witteveen JS et al. (2016). Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity. *Nat Genet.* 48(8):877-887.
- Zhang X et al. (2005). High-resolution mapping of genotype-phenotype relationships in cri du chat syndrome using array comparative genomic hybridization. *Am J Hum Genet*. 76(2):312-326.

Selected publications using SALSA MLPA Probemix P245 Microdeletion Syndromes-1A

- Ariana Kariminejad M et al. (2014). Investigation of Microdeletions in Syndromic Intellectual Disability by MLPA in Iranian Population. *Arch Iran Med.* 17(7):471.
- Bartsch O et al. (2010). Four unrelated patients with lubs X-linked mental retardation syndrome and different Xq28 duplications. *Am J Med Genet A*. 152(2):305-312.
- Boggula VR et al. (2014). Clinical utility of multiplex ligation-dependent probe amplification technique in identification of aetiology of unexplained mental retardation: a study in 203 Indian patients. *Indian J Med Res.* 139(1):66-75.

- Capkova Z et al. (2019). Differences in the importance of microcephaly, dysmorphism, and epilepsy in the detection of pathogenic CNVs in ID and ASD patients. *Peer J.* 7:e7979.
- Donaghue C et al. (2010). Combined QF-PCR and MLPA molecular analysis of miscarriage products: an efficient and robust alternative to karyotype analysis. *Prenat Diagn*. 30(2):133-137.
- Gouas L et al. (2015). Prenatal Screening of 21 Microdeletion/Microduplication Syndromes and Subtelomeric Imbalances by MLPA in Fetuses with Increased Nuchal Translucency and Normal Karyotype. *Cytogenet Genome Res.* 146(1):28-32.
- Goumy C et al. (2010). Prenatal detection of cryptic rearrangements by multiplex ligation probe amplification in fetuses with ultrasound abnormalities. *Genet Med.* 12(6):376-380.
- Hills A et al. (2010). MLPA for confirmation of array CGH results and determination of inheritance. *Mol Cytogenet*. 3:19.
- Hirschfeldova K et al. (2011). Cryptic chromosomal rearrangements in children with idiopathic mental retardation in the Czech population. *Genet Test Mol Biomarkers*. 15(9):607-611.
- Jun S et al. (2019). Identification of Potocki-Lupski syndrome in patients with developmental delay and growth failure. *J Genet Med.* 16(2):49-54.
- Konialis C et al. (2011). Uncovering recurrent microdeletion syndromes and subtelomeric deletions/duplications through non-selective application of a MLPA-based extended prenatal panel in routine prenatal diagnosis. *Prenat Diagn.* 31(6):571-577.
- Lee D et al. (2019). Clinical experience with multiplex ligation-dependent probe amplification for microdeletion syndromes in prenatal diagnosis: 7522 pregnant Korean women. *Mol Cytogenet*. 12:10.
- Li T et al. (2020). Genotype-phenotype correlation in 75 patients with small supernumerary marker chromosomes. *Mol Cytogenet*. 13(1):1-15.
- Lu Y et al. (2020). Rare partial trisomy and tetrasomy of 15q11-q13 associated with developmental delay and autism spectrum disorder. *Mol Cytogenet*. 13(1):1-8.
- Malt EA et al. (2019). Neuropsychiatric phenotype in relation to gene variants in the hemizygous allele in 3q29 deletion carriers: A case series. *Mol Genet Genom Med.* 7(9):e889.
- Manoubi W et al. (2019). Screening of Angelman Syndrome deletion and methylation aberration using MS-MLPA assay in a Tunisian population. *Biomed Res.* 4:1-6.
- Mekkawy MK et al. (2020). Clinical and genetic characterization of ten Egyptian patients with Wolf– Hirschhorn syndrome and review of literature. *Mol Genet Genom Med.* e1546.
- Natera-de Benito D et al. (2015). Clinical and genomic characterization of two patients with a duplication of 9q34: comparison and review of the literature. *Clin Dysmorphol.* 24(1):38-43.
- Pascual-Alonso A et al. (2020). Molecular characterization of Spanish patients with MECP2 duplication syndrome. *Clin Genet.* 97(4):610-620.
- Pebrel-Richard C et al. (2012). An atypical 0.8 Mb inherited duplication of 22q11.2 associated with psychomotor impairment. *Eur J Med Genet*. 55(11):650-655.
- Pohovski LM et al. (2013). Multiplex ligation-dependent probe amplification workflow for the detection of submicroscopic chromosomal abnormalities in patients with developmental delay/intellectual disability. *Mol Cytogenet.* 6(1):7.
- Shukla A et al. (2015). Co-occurrence of a de novo Williams and 22q11.2 microdeletion syndromes. *Am J Med Genet A*. 167(8):1927-1931.
- Stefekova A et al. (2022). MLPA analysis of 32 foetuses with a congenital heart defect and 1 foetus with renal defects pilot study. The significant frequency rate of presented pathological CNV. *Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub.* 166(2):187-194.
- Sumathipala DS et al. (2015). 17p11.2 and Xq28 duplication detected in a girl diagnosed with Potocki– Lupski syndrome. *BMC Res Notes*. 8(1):506.
- Suspitsin EN et al. (2020). Next generation sequencing analysis of consecutive Russian patients with clinical suspicion of inborn errors of immunity. *Clin Genet*. 98(3):231-239.
- Teteli R et al. (2014). Pattern of congenital heart diseases in Rwandan children with genetic defects. The *Pan Afr Med J*. 19:85.

- Thienpont B et al. (2010). Duplications of the critical Rubinstein–Taybi deletion region on chromosome 16p13.3 cause a novel recognisable syndrome. *J Med Genet.* 47(3):155-161.
- Zhang Y et al. (2021). Identifying of 22q11.2 variations in Chinese patients with development delay. *BMC Med Genom.* 14(1):26.
- Zhang L et al. (2022). Genetic subtypes and phenotypic characteristics of 110 patients with Prader-Willi syndrome. *Ital J Pediatr.* 48:121.

P245 produ	P245 product history					
Version	Modification					
B1	Three new microdeletion syndrome regions have been included (2q23, 2q33, distal 22q11) and one region has been removed (WAGR syndrome). Several of the other probes have been replaced.					
A2	The 108 nt Y probe has been removed and new control fragments at 100 and 105 nt have been added.					
А	First release.					

Implemented changes in the product description

Version B1-11 - 12 April 2023 (04P)

- Product is no longer registered for IVD use in Morocco.

Version B1-10 – 23 February 2023 (04P)

- New warning added to *Precautions and warnings* recommending to analyse male and female samples separately.
- Minor correction to the intended purpose was made to align with the Intended Purpose in the Technical File made June 2021: ...developmental delay and/or intellectual disability syndromes was changed to ...developmental delay, intellectual disability and/or congenital anomalies.
- Minor corrections were made to Table 1 and 2: length of control fragments was corrected (64-118 nt) in Table 1; several chromosomal bands were updated for consistency in Table 1; for applicable syndromes *microduplication* was added in last column of Table 1; title of Table 2 corrected; background information in notes below Tables 2a-w was updated.
- Section Related SALSA MLPA probemixes updated for P297.
- Curated the section Selected publications.
- Various minor textual or layout changes.

Version B1-09 - 07 December 2022 (04P)

- Information about the 118 nt Y-chromosome control fragment added to section 'Probemix content'.

Version B1-08 - 22 July 2021 (04P)

- Product description restructured and adapted to a new template.
- UK has been added to the list of countries in Europe that accept the CE mark.
- Section 'exon numbering' added.
- Removed information on P228, P371, P372, P373 and P374, as these products have been discontinued.
- Warnings added to Table 1 and 2 on the possible influence of the SNP rs749912012 for probe 05464-L15184 and SNP rs747391156 for probe 17474-L22693.
- Extra warning for salt sensitivity has been added to the section 'precautions and warnings'.
- Information on distal 22q11 duplications added to Table 2t.

Version B1-07 – 21 August 2020 (02P)

- Product is now registered for IVD use in Costa Rica.

Version B1-06 – 8 November 2019 (02P)

- Product description restructured and adapted to a new template.
- Information on data analysis and normalisation is added to indicate that there are no dedicated reference probes but instead all peaks are used for normalisation.

- Warning added to Table 1 for probe specificity relying on a single nucleotide difference between target gene and related gene or pseudogene.
- Warning added to Table 2n for probe 06811-L22815 that is very sensitive to pipetting mistakes.

Version B1-05 – 31 January 2019 (04)

- Product is now registered for IVD use in Israel.

Version B1-04 - 13 July 2018 (04)

- Product description restructured and adapted to a new template.
- Information regarding SD025 Artificial Duplication DNA and P069 Subtelomeres Mix 2A probemix has been removed.
- Information and references regarding duplications in the 9q22 region have been added to Table 2k.
- Warning added to Table 1 for probe specificity relying on a single nucleotide difference between target gene and related gene or pseudogene.
- Various minor textual or layout changes.

More inform	More information: www.mrcholland.com; www.mrcholland.eu				
	MRC Holland bv; Willem Schoutenstraat 1 1057 DL, Amsterdam, The Netherlands				
E-mail	info@mrcholland.com (information & technical questions) order@mrcholland.com (orders)				
Phone	+31 888 657 200				

IVD	EUROPE* CE ISRAEL COSTA RICA
RUO	ALL OTHER COUNTRIES

*comprising EU (candidate) member states and members of the European Free Trade Association (EFTA), and the UK. The product is for RUO in all other European countries.